Python: An Infroduction

OFE 2021 Summer Workshop
Haiyong Liu
Department of Economics

Agenda

» Infroduction

» Running Python

» Python Programming

vV v v v Vv

>

Variables

Types

Arithmetic operators
Boolean logic
Strings

Prinfing

» Exercises

What is python?¢

» Object oriented language

» Interpreted language

» Supports dynamic data type

» Independent from platforms

» Focused on development time

» Simple and easy grammar

» High-level internal object data types
» Automatic memory management

» |T's free (open source)!

Briet History of Python

» Invented in the Netherlands, early 90s by Guido
van Rossum

» Named after Monty Python
» Open sourced from the beginning

» Considered a scripting language, but is much
more

» Scalable, object oriented and functional from the
beginning

» Used by Google from the beginning
» Increasingly popular

Python's Benevolent Dictator

For Life

“Python 1s an experiment in how

much freedom programmers need.

Too much freedom and nobody can 4

read another's code; too little and

expressive-ness is endangered.”
- Guido van Rossum

Language properties

>
>
>
>
>
>
>

Everything is an object
Modules, classes, functions
Exception handling

Dynamic typing, polymorphism
Static scoping

Operator overloading

Indentation for block structure

High-level data types

>
>
>
>

Numbers: int, long, float, complex
Strings: immutable
Lists and dictionaries: containers

Other types for e.g. binary data, regular expressions,
infrospection

» Extension modules can define new “built-in” data
types

Why learn pythone

» Fun-to-use "Scripting language”

» Object-oriented
» Highly educational

» Very easy to learn

» Powerful, scalable, easy to maintain
» high productivity
» Lots of libraries

» Glue language
» Interactive front-end for FORTRAN/C/C++ code

Where 1o use pythone

» System management (i.e., scripting)
» Graphic User Interface (GUI)

» Infernet programming

» Database (DB) programming

» Text data processing

» Distributed processing

» Numerical operations

» Graphics

» And so on...

Why learn pythone (cont.)

Reduce development time

Reduce code length

Easy to learn and use as developers
Easy to understand codes

Easy to do team projects

vV v v v v Vv

Easy to extend to other languages

Course Goals

» To understand the basic structure and syntax of
Python programming language

» To write your own simple Python scripfs.

» To serve as the starting point for more advanced
training on Python coding

Intfroduction

Running Python

Python Programming

» Data types

» Control flows

» Classes, functions, modules

Hands-on Exercises

Access Python from ECU

remoteaccess.ecu.edu

https://ecu.teamdynamix.com/TDClient/1409/Portal/KB
[ArticleDetelD=67605

|/‘\‘| ENTERPRISE SERVICE
k1§74 | MANAGEMENT SYSTEM

Home Chat Services Knowledge Base

Search

Knowledge Base | Computing Labs, Student Printing & VCL / VCL Virtual Deskiops and Applications

VVCL Virtual Desktops and Applications

Software Available

Microsoft Office

Access

Excel

OneNote
Powerpoint
Publisher Word

Decision Tools Suite 7.6

@Risk
Evolver
NeuralTools
PrecisionTree
StatTools
TopRank

3M - Coding and Reimbursement
TEdit

Alice 3

Amos 25/26
Anaconda Navigator
ArcGIS 108

ArcGIS Pro
AutoCAD 2019/2020
ChemDraw 1819
ENPS

Epilnfo

EViews 12

GPower 3.1

IDEA

ImageJ

Italassi

iThink 10

JMP Pro 1415

Job Browser Pro

Job Math

Job Seeker Workstation
Maple 16/2018/2020
Mathematica 11/12
Matlab R2018b
MicroSim Inhospital
Microsoft Expression Design 4
Microsoft Expression Web 4
Minitab 18

Mormningstar Direct
NDC

NotePad++

Python 3.4

R

ReSampling

Revit 2019/2020

Risk Solver

R-Studio

Sage 50 Accounting
SALT 18

SAS94

SAS Enterprise Guide
SAS Enterprise Miner
Simio 12

SPSS 25/26

SQL Server Management Studio 2018
StataSE 14

Tracker

Wisual Studio 2015
Weka 3.6.4

Python as a calculator

» Let us calculate the distance between Edinburgh
and London in km

483 * 1.60934
648.56402

Variables

» Great calculator but how can we make it store
valuese

» Do this by defining variables

» Can later be called by the variable name

» Variable names are case sensitive and unique
distanceToLondonMiles = 403

mileToKm = 1.60934

distanceToLondonkKm = distanceToLondonMiles * mileToKm
distanceTolLondonKm

648.56402

We can now reuse the variable mileToKm in the next block without
having to define it again!

marathonDistanceMiles = 26.219
marathonDistanceKm = marathonDistanceMiles * mileToKm

print(marathonDistanceKm)

42.19528546

Variables actually have a type, which defines the way it

Is sfored.
Type Declaration Example Usage
Integer int x = 124 Numbers without decimal point
Float float X = 124.56 Mumbers with decimcal point
String str X = "Hello world" Used for text
Boolean bool X = True or X = False Used for conditional statements
NoneType None ¥ = None Whenever you want an empty variable

= 10 # This 1s an integer
y = "20" # This is a string

TypeError Traceback (most recent call 1
ast)
<ipython-input-4-f1463b8bdc2e> in <module=()
1 x=10 # This is an integer
2y = "20" # This is a string
----> 3 X+ Yy

TypeError: unsupported operand type(s) for +: 'int' and 'str

Important lesson to remember!
We can't do arithmetic operations on variables of different types. Therefore
make sure that you are always aware of your variables types!

You can find the type of a variable using type(). For example type type(x).

Casting types

Luckily Python offers us a way of converting variables to
different types!

Casting — the operation of converting a variable to @
different type

X =18 # This 1s an integer
y = "20" # This 1s a string

X + int(y)

30

Similar methods exist for
other data types: int(),
float(), str()

n 1E|ll
IIEE]II

y

-

o
4+ 0

What will be the result?

‘le20'

Arithmetic operations

Similar to actual Mathematics.

Order of precedence is the same
as in Mathematics.

We can also use parenthesis ()

Symbol Task Performed Example Result
+ Addition 4+3 7

- Subtraction 4-3 1

/ Division 712 s

Yo Mod 7% 2 1

* Multiplication 4*3 12

/! Floor division 712 3

= Power of 72 49

Order precedence example

64.0

13 49

Comparison operators

» |.e. comparison operators Operator

Output

» Return Boolean values X==y

(i.,e. True or False) x 1=y

» Used extensively for X<y
conditional statements

X>y

X<=y

X>=y

True if x and y have the same value

True if x and y don't have the same value
True if x is less than y

True if x is more than y

True if x is less than or equal to y

True if x is more than or equal to y

Comparison examples

X =5 # assign 5 to the variable x
X =25 # check 1T value of x 1Is 5
True

Note that == is not the same as =

X =7

False

Logical operators

Operation Result

xory Trueif at least onis True

* Allows us to extend the conditiona xand y
logic

 Will become essential later on

True only if both are True

not x True only if x is False

a not a a b a and b aorb

False True False False False False

True False False True False True
True False False True
True True True True

Truth-rable definitions of bool operations

Combining both

X = 14
check if x is within the range 10..20

True

Another example

That wasn't very easy to read was it?
Is there a way we can make it more readable?

14
42

X
Y

xDivisible
yDivisible

(x
(y

o of

2)
3)

@ # check 1T x 1s a multiple of 2
@ # check 1T y 1is a multiple of 3

not (xDivisible and yDivisible)

False

4
>
>
>

Powerful and flexible in Python
Can be added
Can be multiplied

Can be multiple lines

X = "Python"
y = "rocks"
K+ |l n +3||-

"Python rocks'

x = "This can be"
y = "repeated "
K+""+F*3

'This can be repeated repeated

repeated *

*x = "Edinburgh"
X = x.upper()

y = "University oOf "
y = y.lower()

¥ + X

'university of EDINBURGH'

These are called methods and add extra functionality to the
String.

If you want to see more methods that can be applied to a string
simply type in dir('str')

Mixing up strings and numbers

Often we would need to mix up numbers and strings.
It is best to keep numbers as numbers (i.e. int or float)
and cast them to strings whenever we need them as a string.

X =6
x = (x * 5345) // 63
"The answer to Life, the Universe and Everything is " + str(x)

'The answer to Life, the Universe and Everything is 42°

X = """To include

multiple lines

you have to do this"""

y ="or you can also\ninclude the special\ncharacter "\\n" between lines"
print(x)

print(y)

To include

multiple lines

you have to do this

or you can also

include the special
character "\n" between lines

» When writing scripts, your outcomes aren't printed on
the terminal.

» Thus, you must print them yourself with the print|()

print("Python is powerful!")
Python is powerful!

X "Python is powerful"
y = " and versatile!™
print(x + y)

Python is powerful and versatile!

Do you see anything wrong with this block?

strl "which means it has even more than"
str2 76

str3 = "guirks"

print(strl + str2 + str3)

TypeError Traceback (most recent call 1

ast)

<ipython-input-2-3bel5a6244a4= in <module=()
2 str2 = 76
3 str3 = " quirks

---> 4 print({strl + strz + str3)

TypeError: must be str, not int

Another more generic way o

fix it

strl = "It has"

str2 = 7B
str3 = "methods!"
print{strl, str2, str3)

It has 76 methods!

If we comma separate statements in a print function we
can have different variables printing!

Placeholders

» A way to interleave numbers is

pi = 3.14159 # pi
d = 12756 # Diameter of eath at equator (in km)
c = pi*d # Circumference of equator

#Print using +, and casting
print("Earth's diameter at equator: " + str(d) + "km. Equator's circumference:" + str{c) + "km.")

#Print using several arguments
print("Earth's diameter at equator:", d, "km. Equator's circumference:", c, "km.")

#Print using .format
print("Earth's diameter at equator: {:.1f} km. Equator's circumference: §{:.1f km.".-Format(d,}

Earth's diameter at equator: 12756km. Equator's circumference:48874.12284km.
Earth's diameter at equator: 12756 km. Equator's circumfersnce: 48674.12284 km.
Earth's diameter at equator: 12756.8 km. Equator's circumference: 48874.1 km.

» Elegant and easy
» more in your notes

» Useful when your code needs further explanation.
Either for your future self and anybody else.

» Useful when you want to remove the code from
execution but not permanently

» Commentsin Python are done with #

» print(totalCost) is ambiguous and we can't exactly be sure what totalCost is.
= print(totalCost) # Prints the total cost for renovating the Main Library is more informative

» One of the most useful concepts

» Group mulfiple variables together (a kind of
container!)

fruits = ["apple", "orange", "tomato", "banana"] # a list of strings
print{type(fruits))
print{fruits)

<class 'list'=>
['apple', 'orange', 'tomato’, 'banana’]

Indexing a list

* Indexing — accessing Items Wi data structure

fruits[2]

‘tomato’

* Indexing a list is not very intuitive...
« The first element of a list has an index 0

Index: 0 1 2 3

List: apple orange tomato banana

What will fruits[3] returne

fruits = ["apple", "orange", "tomato", "banana"]
print(type(fruits))
print(fruits)

=class 'list'=
['apple', 'orange', 'tomato', 'banana’]

a list of strings

What will this return?

fruits[4]

IndexError

ast)

<ipython-input-14-b8c9ldab6ba3a> in
--= 1 fruits[4]

IndexError: list index out of range

Traceback (most recent call 1

< MO _.-I. - |: ':I

Data structure sizes

Make sure you are always aware of the sizes of each
variable!

This can easily be done using the len() function.

It returns the length/size of any data structure

len(fruits)

4

Is a fomato really a fruite

fruits[2] = "apricot"
print(fruits)

['apple', 'orange', 'apricot', 'banana']

Furthermore, we can modify lists in various ways

fruits.append("lime™) # add new item to list
print(fruits)

fruits.remove("orange") # remove orange from list
print(fruits)

['apple', 'orange', 'apricot', 'banana', 'lime’]
['apple', 'apricot', 'banana', 'lime’]

Lists with infegers

range() - a function that generates a sequence of numbers as a list

nums = list(range(10))
print(nums)

(@, 1, 2, 3, 4, 5, 6, 7, 8, 9]
nums = list(range(®@, 100, 5))
print(nums)

(@, 5, 1@, 15, 26, 25, 38, 35, 40, 45, 58, 55, 60, 65, 70, 75, 80, 85,
98, 95]

« Slicing — obtain a particular set of sub-elements from a data

structure.
» Very useful and flexible.

print{nums}
print(nums[1:5:2]) # Get from item 1{starting point) through item 5{end point, not included) with step size 2
print{nums[@:3]) # Get items & through 3(not included)

print(nums[4:]) # Get items 4 onwards

print{nums[-1]) # Get the Llast item

print{nums[::-1]) # Get the whole List backwards

[&, 5, 1e, 15, 28, 25, 38, 35, 4@, 45, 5@, 55, 68, 65, 78, 75, 88, 85, 98, 95]
[3, 15]

[8, 5, 18]

[2@, 25, 38, 35, 48, 45, 58, 55, 68, 65, 78, 75, 88, B85, 5@, 95]

o5

[95, 9@, 85, 88, 75, 78, 65, 68, 55, 5@, 45, 48, 35, 38, 25, 28, 15, 18, 5, 8]

Lists — helpful functions

» Makes them extremely useful and versatile

print(len(nums)) # number of items within the list
print{max{nums}) # the maximum value within the list
print(min{nums)) # the minimum value within the list

20
85
)

Lists can be of different types

» Nof very useful, but possible

mixed = [3, "Two", True, None]
print(mixed)

[3, "Two', True, None]

Mutable object — can be changed after creation.

Immutable object - can NOT be changed after
creation.

» Are lists mutable?

» Effectively lists that are immutable (l.e. can't be
changed)

fruits = ("apple", "orange", "tomato", "banana")
print{type(fruits))
print{fruits)

now the tomato is a fruit forever

<class 'tuple'=
(‘apple', 'orange', 'tomato', 'banana')

Dictionaries

« Similar to actual dictionaries

* They are effectively 2 lists
combined — keys and values

« We use the keys to access
the values instead of
indexing them like a list

« Each value is mapped to a
unigue key

keys

Monday

values

Tuesday

A 4

Diluain

Wednesday

L

Dimairt

Thursday

k4

Diciadain

Friday

L J

Diardaoin

v

Dihaoine

Dictionary definition

Defined as comma separated key : value pairs:

mydict = {keyl: vall,

key2: wval2, \
key3: wval3d} comma
/ separated

Curly brackets

Dictionary properties

4
>
>
>

Values are mapped to a key
Values are accessed by their key
Key are uniqgue and are immutable

Values cannot exist without a key

Dictionaries

Let us define the one from the previous image

days = {"Monday": "Diluain", "Tuesday": "Dimairt",
"Wednesday": "Diciadain", "Thursday": "Diardaoin",
"Friday": "Dihaoine"}

print(type(days))

print(days)

<class 'dict'=
{'Monday': 'Diluain’', 'Tuesday': 'Dimairt', 'Wednesday': 'Diciadain’,
'Thursday': 'Diardacin', 'Friday': 'Dihaoine'}

Accessing a dictionary

Values are accessed by their keys (just like a dictionary)

days["Friday"]

'Dihaoine’

Note that they can't be indexed like a list

Altering a dictionary

Can be done via the dictionary methods

days.update({"Saturday": "Disathairne"})

print(days)

days.pop("Monday") # Remove Monday because nobody likes it
print(days)

{'Monday': 'Diluain', 'Tuesday': 'Dimairt', 'Wednesday': 'Diciadain’',
'Thursday': 'Diardaoin', 'Friday': 'Dihaoine', 'Saturday': 'Disathairn
e'}

{'Tuesday': 'Dimairt', 'Wednesday': 'Diciadain', 'Thursday': 'Diardaoi

n', 'Friday': 'Dihaoine', 'Saturday': 'Disathairne'}

Keys and Values

1T is possible to obtain only the keys or values of a

print(days.keys()) # get only the keys of the dictionary
print{days.values()) # get only the values of the dictionary
'Friday', 'Saturday'])

dict keys(['Tuesday', 'Wednesday', 'Thursday',
dict values(['Dimairt', 'Diciadain', 'Diardacin’', ‘'Dihaoine', 'Disathai
rne'])

This is useful for iteration.

vV v v Vv

Effectively lists that can't contain duplicate items
Similar functionality to lists
Can't be indexed or sliced
Can be created with {§ or you can convert a list fo a set
x = set([1l, 2, 3]) # a set created from a list
print(type(x))
printix)
y = {1, 2, 3} # a set created directly
X ==y # x and y are the same object

=class 'set'=
{1, 2, 3}

True

» Fundamental building block of software

if Cr—— C o nditional statement
— . H
Executed if answer is True

else:

continue running programj @ yocyted if answer is False

It Else example

Try running the example below.
What do you get?

X = True
1f x:
print("Executing if")
else:
print("Executing else")
print("Prints regardless of the outcome of the if-else block")

Executing if
Prints regardless of the outcome of the if-else block

Indentation mattersl!

18 is ewven!

18 is divisible by 5!

Output only when x is divisible by both 2 and 5.
Mo indentation. Output in all cases.

» Codeis grouped by its indentation
» Indentationis the number of whitespace or tab characters before the code.

» If you put code in the wrong block then you will get unexpected behavior

Extending if-else blocks

» We can add infinitely more if statements using elif

1f conditionl:
condition 1 was True
elif condition2:
condition 2 was True

else:
neither condition 1 or condition 2 were True

» elif = else + if which means that the previous
statements must be false for the current one 1o

evaluate to frue

Bifcoin broker example

purchasePrice = float(input("Price at which you have purchased bitcoins: "))
currentPrice = float{input("Current price of the bitcoins: "))

if currentPrice < purchasePrice#*0.9:

print("Not a good idea to sell your bitcoins now.")

print("You will lose", purchasePrice - currentPrice, "£ per bitcoin.")
elif currentPrice > purchasePrice#*1.2:

print("You will make", currentPrice - purchasePrice, "£ per bitcoin.")
else:

print("Not worth selling right now.")

. WhaAt woniild hannen if hnth canditinne Aare Triia?2

purchasePrice = float(input("Price at which you have purchased bitcoins: "))
currentPrice = float(input("Current price of the bitcoins: "})

if (cu rrentPricpu rchasePrice*0.9):

print("Not a good idea to sell your bitcoins now.")

print("You will lose", purchasePrice - currentPrice, "£ per bitcoin.")
elif (currentPrice = purchasePrice*1.2):

print("You will make", currentPrice - purchasePrice, "£ per bitcoin.")
else:

print("Not worth selling right now.")

For loop

» Allows us to iferate over a set amount of variables
within a data structure. Durlng ’rho’r we con

S o 1 .1 _ SRR [E S [-

fnr 1tem in itemList:
do something to item

» Again, indentation is important here!

~

fruits = ["apple”, "orange”, "tomato”, "banana”]

print(“The fruit”, fruits[e],
print(“The fruit”, fruits[1],
print(“The fruit”, fruits[2],
print(“"The fruit", fruits[3],

The fruit apple has index @
The fruit orange has index 1
The fruit tomato has index 2
The fruit banana has index 2

"has
"has
"has
"has

index", fruits.
index", fruits.
index", fruits.
index", fruits.

index
index
index
index

fruits[e]))
fruits[1]))
fruits[2]))
fruits[3]))

e T e T e B i

» What if we have much more than 4 items in the list,

say, 1000¢

For example

 Now with a for loop

fruitList = ["apple", "orange", "tomato", "banana"]

for fruit in fruitlList:
print("The fruit", fruit, "has index", fruitList.index(fruit))

The fruit apple has index @
The fruit orange has index 1
The fruit tomato has index 2
The fruit banana has index 3

« Saves us writing more lines
 Doesn't limit us in ferm of size

Numerical for loop

numbers = list(range(10))
for num in numbers:
squared = num ** 2
print({num, "squared is", squared)

squared is ©
squared is 1
squared is 4
squared is 9
squared is 16
squared is 25
squared is 36
squared is 49
squared is 64
squared is 81

W00 =N R E

While loop

» Another useful loop. SIMIIG

» A while loop doesn't run for a predefined number of iterations, like @
for loop. Instead, it stops as soon as a given condition becomes

n==ao

while n < 5:
print("Executing while loop")
n=n+1

print("Finished while loop")

Executing while loop
Executing while loop
Executing while loop
Executing while Lloop
Executing while Lloop
Finished while loop

Break statement

Allows us to go(break) out of a loop preliminary.

4
» Adds a bit of controllability to a while loop.
» Usually used with an if.

>

Can also be used in a for loop.

rl.“.. ~—— A

n=2=a

imamar Al viima AmAT AN A AvrA A A A A ‘.I,.‘ile

| while True: # execute indefinitely
print("Executing while loop")

if n ==
break

n=n+1
print("Finished

Executing while
Executing while
Executing while
Executing while
Executing while
Executing while

stop loop if n is 5

while loop™)

loop
loop
loaop
loop
loop
loop

Finished while loop

Allow us to package functionality in a nice and
readable way

reuse it without writing it again
Maoke code modular and readable

Rule of thumb - if you are planning on using very
similar code more than once, it may be worthwhile
writing it as a reusable function.

Function declaration

keyv&ord

unctiunﬂame
statments..

argumentl, argument2, argument3, ... argumentN):

return returnValue \

[Optional] Exits the function and
returns some value

* Functions accept arguments and execute a piece of code
» Often they also return values (the result of their code)

Function example

def printNum{num) :
print("My favourite number 1is", num)

printNum(7)
printNum(14)
printNum(z2)

My favourite number is 7
My favourite number is 14
My favourite number is 2

Function example 2

We want to make a program tnat rounds numoers up or
down.
Try %@nﬁ)c:ck ’rhe following into a function.

remainder = x %

if remainder < B 5:
print("Number rounded down")
X = X - remainder

else:
print("Number rounded up")
X=X+ (1 - remainder)

print("Final answer is", x}

Number rounded down
Final answer 1is 3.0

Function example 2

def roundMum(num) :
remainder = num % 1
if remainder = 0.5:
return num - remainder
else:
return num + (1 - remainder)

Will it work?
¥ = roundNum(3.4)
print (x)

y = roundNum(7.7)
print(y)

Z = roundNum(9.2)
print(z)

3.0
8.0
9.0

Function example 3

dst[1] — dst|0]

src[l] — sre[0] dst[0)

(val — sre[0]) x

Generic scale function
Scales from src range to dst range
def scale(wval, src, dst=(-1,1)}:
return (int(val - src[@]) / (src[l] - src[@©])) #* (dst[1l] - dst[@]) + dst[O]

print(scale(49, (-100,180), (-50,50)))
print(scale(49, (-100,100)))

24.5
@.49

abs(
all(
any()
ascii()
hin()

bool ()
bytearray()
bytes()
callable()
chr()

)
)

classmethod()

compile()
complex()
delattr()

dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()
hasattr()
hash{()

Built-in Functions

help()

hex()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()
map ()

max()
memoryview()

To find out how they work:
https://docs.python.org/3.3/library/functions.html

Python built-in functions

min()
next()
object()
oct()
open()
ord()
pow()
print{()
property()
range()
repr()
reversed()
round()
set()

setattr()
slice()
sorted()

staticmethod()

str()

sum()
super()
tuple()
type()
vars()

zip()
import ()

https://docs.python.org/3.3/library/functions.html

Running Python Programs

Interactively

Suppose the file script.py contains the following lines:
print 'Hello world'
x = [0,1,2]
Let's run this script in each of the ways described on the last slide:
» python
>>> import script # DO NOT add the .py suffix. Scriptis a module here
>>> x
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name 'x' is not defined

>>> script.x # to make use of x, we need to let Python know which
#module it came from, i.e. give Python its context

[0,1,2]

File naming conventions

» python files usually end with the suffix

» but executable files usually don’t have
the extension

» modules (later) should always have the

extension

References

» Python Homepage
e http://www.python.org

» Python Tutorial
» hitp://docs.python.org/tutorial/

» Python Documentation

e Nitp://www.python.org/doc

» Python Library References
» hitp://docs.python.org/release/2.5.2/lib/lib.html

» Python Add-on Packages:
» http://pypi.python.org/pypi

http://www.python.org/
http://docs.python.org/tutorial/
http://www.python.org/doc
http://docs.python.org/release/2.5.2/lib/lib.html

