
Python: An Introduction

OFE 2021 Summer Workshop

Haiyong Liu

Department of Economics

Agenda

 Introduction

 Running Python

 Python Programming

 Variables

 Types

 Arithmetic operators

 Boolean logic

 Strings

 Printing

 Exercises

What is python?

 Object oriented language
 Interpreted language

 Supports dynamic data type
 Independent from platforms
 Focused on development time

 Simple and easy grammar
 High-level internal object data types

 Automatic memory management

 It’s free (open source)!

Brief History of Python

 Invented in the Netherlands, early 90s by Guido
van Rossum

 Named after Monty Python

 Open sourced from the beginning

 Considered a scripting language, but is much
more

 Scalable, object oriented and functional from the
beginning

 Used by Google from the beginning

 Increasingly popular

Python’s Benevolent Dictator

For Life

“Python is an experiment in how

much freedom programmers need.

Too much freedom and nobody can

read another's code; too little and

expressive-ness is endangered.”

- Guido van Rossum

Language properties

 Everything is an object

 Modules, classes, functions

 Exception handling

 Dynamic typing, polymorphism

 Static scoping

 Operator overloading

 Indentation for block structure

High-level data types

 Numbers: int, long, float, complex

 Strings: immutable

 Lists and dictionaries: containers

 Other types for e.g. binary data, regular expressions,

introspection

 Extension modules can define new “built-in” data

types

Why learn python?

 Fun-to-use "Scripting language"

 Object-oriented

 Highly educational

 Very easy to learn

 Powerful, scalable, easy to maintain

 high productivity

 Lots of libraries

 Glue language

 Interactive front-end for FORTRAN/C/C++ code

Where to use python?

 System management (i.e., scripting)

 Graphic User Interface (GUI)

 Internet programming

 Database (DB) programming

 Text data processing

 Distributed processing

 Numerical operations

 Graphics

 And so on…

Why learn python? (cont.)

 Reduce development time

 Reduce code length

 Easy to learn and use as developers

 Easy to understand codes

 Easy to do team projects

 Easy to extend to other languages

Course Goals

 To understand the basic structure and syntax of

Python programming language

 To write your own simple Python scripts.

 To serve as the starting point for more advanced

training on Python coding

Agenda

 Introduction

 Running Python

 Python Programming

 Data types

 Control flows

 Classes, functions, modules

 Hands-on Exercises

Access Python from ECU

remoteaccess.ecu.edu

https://ecu.teamdynamix.com/TDClient/1409/Portal/KB

/ArticleDet?ID=67605

Python as a calculator

 Let us calculate the distance between Edinburgh

and London in km

Variables

 Great calculator but how can we make it store

values?

 Do this by defining variables

 Can later be called by the variable name

 Variable names are case sensitive and unique

We can now reuse the variable mileToKm in the next block without

having to define it again!

Types

Variables actually have a type, which defines the way it

is stored.

The basic types are:

WHY SHOULD WE CARE?

Important lesson to remember!

We can't do arithmetic operations on variables of different types. Therefore

make sure that you are always aware of your variables types!

You can find the type of a variable using type(). For example type type(x).

Casting types

Luckily Python offers us a way of converting variables to

different types!

Casting – the operation of converting a variable to a

different type

Similar methods exist for

other data types: int(),

float(), str()

Quick quiz

What will be the result?

Arithmetic operations

Similar to actual Mathematics.

Order of precedence is the same

as in Mathematics.

We can also use parenthesis ()

Order precedence example

Quick quiz

vs

13 49

Comparison operators

 I.e. comparison operators

 Return Boolean values

(i.e. True or False)

 Used extensively for

conditional statements

Comparison examples

False

Logical operators

• Allows us to extend the conditional

logic

• Will become essential later on

Combining both

True True

Another example

True True

That wasn't very easy to read was it?

Is there a way we can make it more readable?

True

Strings

 Powerful and flexible in Python

 Can be added

 Can be multiplied

 Can be multiple lines

Strings

Strings

These are called methods and add extra functionality to the

String.

If you want to see more methods that can be applied to a string

simply type in dir('str')

Mixing up strings and numbers

Often we would need to mix up numbers and strings.

It is best to keep numbers as numbers (i.e. int or float)

and cast them to strings whenever we need them as a string.

Multiline strings

Printing

 When writing scripts, your outcomes aren't printed on

the terminal.

 Thus, you must print them yourself with the print()

function.

 Beware to not mix up the different type of variables!

Quick quiz

Do you see anything wrong with this block?

Another more generic way to

fix it

If we comma separate statements in a print function we

can have different variables printing!

Placeholders

 A way to interleave numbers is

 Elegant and easy

 more in your notes

Commenting

 Useful when your code needs further explanation.

Either for your future self and anybody else.

 Useful when you want to remove the code from

execution but not permanently

 Comments in Python are done with #

Lists

 One of the most useful concepts

 Group multiple variables together (a kind of

container!)

Indexing a list

• Indexing – accessing items within a data structure

• Indexing a list is not very intuitive...

• The first element of a list has an index 0

Quick quiz

What will fruits[3] return?

Quick quiz

What will this return?

Data structure sizes

Make sure you are always aware of the sizes of each

variable!

This can easily be done using the len() function.

It returns the length/size of any data structure

Is a tomato really a fruit?

Furthermore, we can modify lists in various ways

Lists with integers

range() - a function that generates a sequence of numbers as a list

Slicing lists

• Slicing – obtain a particular set of sub-elements from a data

structure.

• Very useful and flexible.

Lists – helpful functions

 Makes them extremely useful and versatile

Lists can be of different types

 Not very useful, but possible

Mutability

Mutable object – can be changed after creation.

Immutable object - can NOT be changed after
creation.

Quick quiz

 Are lists mutable?

Tuples

 Effectively lists that are immutable (I.e. can't be

changed)

Dictionaries

• Similar to actual dictionaries

• They are effectively 2 lists

combined – keys and values

• We use the keys to access

the values instead of

indexing them like a list

• Each value is mapped to a

unique key

Dictionary definition

Defined as comma separated key : value pairs:

Curly brackets

Comma

separated

Dictionary properties

 Values are mapped to a key

 Values are accessed by their key

 Key are unique and are immutable

 Values cannot exist without a key

Dictionaries

Let us define the one from the previous image

Accessing a dictionary

Values are accessed by their keys (just like a dictionary)

Note that they can't be indexed like a list

Altering a dictionary

Can be done via the dictionary methods

Keys and Values

It is possible to obtain only the keys or values of a

dictionary.

This is useful for iteration.

Sets

 Effectively lists that can't contain duplicate items

 Similar functionality to lists

 Can't be indexed or sliced

 Can be created with {} or you can convert a list to a set

If Else

 Fundamental building block of software

Conditional statement

Executed if answer is True

Executed if answer is False

If Else example

Try running the example below.

What do you get?

Indentation matters!

 Code is grouped by its indentation

 Indentation is the number of whitespace or tab characters before the code.

 If you put code in the wrong block then you will get unexpected behavior

Extending if-else blocks

 We can add infinitely more if statements using elif

 elif = else + if which means that the previous
statements must be false for the current one to
evaluate to true

Bitcoin broker example

Quick quiz

 What would happen if both conditions are True?

For loop

 Allows us to iterate over a set amount of variables

within a data structure. During that we can

manipulate each item however we want

 Again, indentation is important here!

Example

 Say we want to go over a list and print each item
along with its index

 What if we have much more than 4 items in the list,
say, 1000?

• Now with a for loop

• Saves us writing more lines

• Doesn't limit us in term of size

For example

Numerical for loop

While loop

 Another useful loop. Similar to the for loop.

 A while loop doesn't run for a predefined number of iterations, like a

for loop. Instead, it stops as soon as a given condition becomes

true/false.

Break statement

 Allows us to go(break) out of a loop preliminary.

 Adds a bit of controllability to a while loop.

 Usually used with an if.

 Can also be used in a for loop.

Quick quiz

How many times are we going to execute the while

loop?

Functions

 Allow us to package functionality in a nice and

readable way

 reuse it without writing it again

 Make code modular and readable

 Rule of thumb - if you are planning on using very

similar code more than once, it may be worthwhile

writing it as a reusable function.

Function declaration

keyword Any number of

arguments

[Optional] Exits the function and

returns some value

• Functions accept arguments and execute a piece of code

• Often they also return values (the result of their code)

Function example

Function example 2

We want to make a program that rounds numbers up or
down.

Try to pack the following into a function.

Function example 2

Function example 3

Python built-in functions

To find out how they work:

https://docs.python.org/3.3/library/functions.html

https://docs.python.org/3.3/library/functions.html

Running Python Programs

Interactively

Suppose the file script.py contains the following lines:

print 'Hello world'

x = [0,1,2]

Let's run this script in each of the ways described on the last slide:

 python

>>> import script # DO NOT add the .py suffix. Script is a module here

>>> x

Traceback (most recent call last):

File "<stdin>", line 1, in ?

NameError: name 'x' is not defined

>>> script.x # to make use of x, we need to let Python know which
#module it came from, i.e. give Python its context

[0,1,2]

File naming conventions

 python files usually end with the suffix .py

 but executable files usually don’t have

the .py extension

 modules (later) should always have the .py

extension

References

 Python Homepage

• http://www.python.org

 Python Tutorial

• http://docs.python.org/tutorial/

 Python Documentation

• http://www.python.org/doc

 Python Library References

 http://docs.python.org/release/2.5.2/lib/lib.html

 Python Add-on Packages:

 http://pypi.python.org/pypi

http://www.python.org/
http://docs.python.org/tutorial/
http://www.python.org/doc
http://docs.python.org/release/2.5.2/lib/lib.html

