
Introduction to SAS
programming

Summer OFE Workshop 2021

Haiyong Liu

Department of Economics

What Is SAS?

• SAS is a collection of modules that are used to
process and analyze data.

• It began in the late ’60s and early ’70s as a
statistical package (Statistical Analysis System).

• SAS is also an extremely powerful, general-purpose
programming language.

• In recent years, it has been enhanced to provide
state-of-the-art data mining tools and programs for
Web development and analysis.

Data-Driven Tasks
The functionality of the SAS System is built around the four
data-driven tasks common to virtually any application:

• 1. data access:
• addresses the data required by the application

• 2. data management:
• shapes data into a form required by the application

• 3. data analysis:
• summarizes, reduces, or otherwise transforms raw data into

meaningful and useful information

• 4. data presentation:
• communicates information in ways that clearly demonstrate its

significance

An Overview of SAS Data
Processing

DATA steps are used to create SAS data sets.
PROC steps are used to process SAS data sets.

Why SAS?

• Able to process large data set(s)

• Easy to cope with multiple variables

• Able to track all the operations on the data set(s)

• Generate systematic output

• Summary statistics

• Graphs

• Regression results

• Most government agencies and private sectors use

SAS

Roadmap

• Thinking in “SAS”

• Basic rules

• Read in data

• Data cleaning commands

• Summary statistics

• Combine two or more datasets

• Hypothesis testing

• Regression

Thinking in “SAS”

• What is a program?
• Algorithm, recipe, set of instructions

• How is programming done in SAS?
• SAS is like programming in any language:

• Step by step instructions
• Can create your own routines to process data
• Most instructions are set up in a logical manner

• SAS is NOT like other languages:
• Some syntax is peculiar to SAS
• Written specifically for statistics so it isn’t all-purpose
• Canned processes that you cannot edit nor can you see the

code

Thinking in “SAS”

• Creating a program

• What is your problem? (take project 3 as an example)

• How can you find a solution?

• What steps need to be taken to find an answer?

• Do I need to read in data?
• What variables do I need?

• Where is the data?

• What format is the data in?

• How do I need to clean the data?
• Are there outliers?

• Are there any unexpected values in the data?

• How do I need to transform the data?
• Are the variables in the form that I need?

SAS Data Sets

Two Sections

Descriptor Section

Data Section

Data Set Descriptor Section

SAS Data Section

Attributes of Variables

• Name
• e.g. Status

• Type
• Numeric or Character

• e.g. Status in this example is character (T, TT, PT, or NTT)
and Satisfaction is numeric (1 to 5).

SAS Data Set Terminology

• Variables – columns in a SAS data set.

• Observations – rows in a SAS data set.

• Numeric Data – values that are treated as numeric and
may include 8 bytes of floating storage for 16 to 17
significant digits.

• Character Data – non numeric data values such as
letters, numbers, special characters, and blanks. May
be stores with a length of 1 to 32, 767 bytes. One byte
is equal to one character.

SAS Data Set and Variable Name
Criteria
• Can be 32 characters long.

• Can be uppercase, lowercase, or a mixture of the
cases.

• Are not case sensitive

• Cannot start with number and cannot contain
special characters or blanks.

• Must start with a letter or underscore.

SAS Dates

• Dates are treated as special kind of numeric data.

• They are the number of days since January 1st, 1960. January
1st 1960 is the 0 point. SAS dates can go back to 1582
(Gregorian Calendar) and forward to the year 20000.

• Dates are displayed using a format. There are a number of
different date formats supported by SAS.

• Time is scored as the number of seconds since
midnight. SAS date time is the number of seconds
since January 1st, 1960.

Missing Data in SAS

• Missing values are valid values.
• For character data, missing values are displayed as blanks.

• For numeric data, missing values are displayed as periods.

SAS Syntax

SAS Syntax

• Statements in SAS are like sentences. The
punctuation though is a semicolon(;)rather than a
period (.)

• Most Statements (but not all) start with an
identifying key word (e.g. proc, data, label, options,
format…)

• Statements are strung together into sections similar
to paragraphs. These paragraphs in a Windows OS
are ended with the word “run” and a semicolon.

Example of SAS Syntax

SAS Syntax Rules

• SAS statements are format free.

• One or more blanks or special characters are used
to separate words.

• They can begin and end in any column.

• A single statement can span multiple lines.

• Several statements can be on the same line.

Example of SAS Free Format

Using the free-format Syntax
rules of SAS though can make it difficult for others (or you) to read your
program. This is akin to
writing a page of text with little attention to line breaks. You may still have
Capital letters and periods, but where a sentence begins and ends may be a bit confusing.

Example of SAS Formatted

Using the free-format Syntax rules of SAS though can make it difficult for others (or you)
to read your program. This is akin to writing a page of text with little attention to line
breaks. You may still have capital letters and periods, but where a sentence begins and
ends may be a bit confusing. Isn’t this paragraph a bit easier to read?

SAS Comments

• Type /* to begin a comment.

• Type your comment text.

• Type */ to end the comment.

• Or, type an * at the beginning of a line. Everything
between the * and the ; will be commented.

• e.g. *infile ‘tutor.dat’;

• Alternatively, highlight the text that you would like to
comment and use the keys Ctrl / to comment the line.
To uncomment a line, highlight and use the Ctrl Shift /
keys.

SAS Comments

SAS Windows

SAS Windows

Log

Editor

Explorer

Enhanced Editor Window

• Your program script appears in this window.

• You can either bring it in from a file or type the program right into the window.

• Once the program is in the window, you can Click Submit (or the running guy).

Enhanced
Editor

Output

SAS Log

• SAS Log provides a “blow by blow” account of the execution of your program. It includes how
many observations were read and output, as well as, errors and notes.

• Note the errors in red.

Output Window

SAS Library

• SAS Data Libraries are like drawers in a filing cabinet. The SAS data sets are files within those
drawers. Note the icons for the SAS library match that metaphor.

• In order to assign a “drawer”, you assign a library reference name (libref).

• There are two drawers already in your library: work (temporary) and sasuser (permanent).

• You can also create your own libraries (drawers) using the libname statement.

Establishing the libname

libname Tina ‘E:\Trainings\JMP Training’;

run;

Type the libname
command in the
Enhanced Editor.
Click on the running
icon

Viewtable Window

Proc Reg

Proc reg data= Tina.hsb2;
Model write = read / clb;
Run;

Proc Univariate
Proc Univariate

Proc Univariate

Proc Univariate

Basic rules (1) – organize files

• .sas – program file

• .log – notes, errors, warnings

• .lst – output

• .sas7bdat – data file

• library – a cabinet to put data in
• Default: Work library

• temporary, erased after you close the session
• Permanent library

• libname mylib “m:\”;
• mylib.mydata

= a sas data file named “mydata” in library “mylib”

• run and recall .sas

Basic rules (2) -- program

• every command ends with ;

• format does not matter
if x=1 then y=1; else y=2; is the same as

if x=1 then y=1;

else y=2;

• case insensitive

• comment
* this is comment;

/* this is comment */;

Basic rule (3) – variable

• Type
• numeric (default, 8 digit, . stands for missing value)

• character ($, default 8 digit, blank stands for missing)

• Variable names
• <=32 characters if SAS 9.0 or above

• <=8 characters if SAS 8 or below

• case insensitive

• Must start with letter or “_”
_name, my_name, zip5, u_and_me

-name, my-name, 5zip, per%, u&me, my@w, my$sign

Common Flow of a SAS Program

• Beginning: Create a SAS data set

• Middle: Work with data using SAS procedures
(PROCs)

• End: RUN the program

SAS and Data: SAS Data Sets

• SAS is flexible. Can read data from many
sources

• Sometimes you can get SAS data sets from
data sources (BLS, etc.)

• First step is to convert raw data to a SAS data
set

*BEGINNING: Create a SAS data set containing data. 2 steps.;

* Step 1: Create a SAS data set;

data htwt; * create data set named HTWT ;
input name $ sex $ age height weight; * input variables by name and type;
x = height + weight; * create x ;
y = age**2; * create y - ** exponentiation ;
z = 3*age - 5; * create z - * multiplication ;

A SAS Program: Beginning

SAS Statements: data, input, x =, y =, z =

*BEGINNING: Create a SAS data set containing data. 2 steps.;

* Step 1: Create a SAS data set;

data htwt; * create data set named HTWT ;
input name $ sex $ age height weight; * input variables by name and type;
x = height + weight; * create x ;
y = age**2; * create y - ** exponentiation ;
z = 3*age - 5; * create z - * multiplication ;

Beginning: Data Step Processing

data: Tells SAS the name of the SAS data set being

created.

*BEGINNING: Create a SAS data set containing data. 2 steps.;

* Step 1: Create a SAS data set;

data htwt; * create data set named HTWT ;
input name $ sex $ age height weight; * input variables by name and type;
x = height + weight; * create x ;
y = age**2; * create y - ** exponentiation ;
z = 3*age - 5; * create z - * multiplication ;

Beginning

input: Tells SAS the names of the variables being

read. varname $ means character data.

Beginning

* Step 2: Input observations ;
* the cards statement precedes data. The data lines;
* DO NOT have semi-colons ;
*input name $ sex $ age height weight;

cards;
alfred M 14 69 112
alice F 13 56 84
barbara F 14 62 102
henry M 15 67 135
john M 16 70 165
sally F 16 63 120
;

cards: Tells SAS the the following lines are data. Data must follow

Delimiters

• Must separate variables on cards or external
files

• Accomplished with “delimiters”

• Spaces are common, SAS default

• Can also use other characters, but must tell
SAS

Middle: Work with data

proc:A SAS procedure. These are how you work with the

data in SAS. There are many SAS procedures.
print: SAS procedure to create an output file. By default,

uses the data from the last data statement.

*MIDDLE: Work with the data. 1 Step.;

* Step 3: Operate with the SAS data;

proc print; * print the data;
title 'Height-Weight Example #1'; * put title with data;

Summary Statistics in SAS

• Means and Standard Deviations can be

easily calculated for variables in a SAS
data set using the means procedure

• Format:
proc means;

var v1 v2 v3;

• List all the variables you want summary
statistics for on the second line

Summary Statistics 07:22 Thursday, October 28, 1999 3

Variable N Mean Std Dev Minimum Maximum
--
X 6 184.1666667 32.4679329 140.0000000 235.0000000
Y 6 216.3333333 35.4664160 169.0000000 256.0000000
Z 6 39.0000000 3.6331804 34.0000000 43.0000000
--

Output from proc means

End: Run program

*END: Run the program. 1 step;

* Step 4: Run the program;

run; *Run the above statements;

data htwt;
input name $ sex $ age height weight;
x = height + weight;
y = age**2;
z = 3*age - 5;

cards;
alfred M 14 69 112
alice F 13 56 84
barbara F 14 62 102
henry M 15 67 135
john M 16 70 165
sally F 16 63 120
;

proc means;
var x y z;
title 'Summary Statistics';

proc print;
title 'Height-Weight Example #1';

run;

Errors in SAS Programs

• You will make them

• Common ones:
• Leaving off a semi-colon from the end of a SAS

statement

• Misspelling

• Omitting one quote (‘) in infile or title statement

• SAS Log will help you to find errors

• Field: Smallest unit of data. One observation
of a variable. Can be either character (letters
and numbers) or numeric (numbers only).

• Record: A single line of input. Contains one or
more fields

• File: A collection of records

Some Definitions

*input name $ sex $ age height weight;

alfred M 14 69 112
alice F 13 56 84
barbara F 14 62 102
henry M 15 67 135
john M 16 70 165
sally F 16 63 120
;

A Character Field

*input name $ sex $ age height weight;

alfred M 14 69 112
alice F 13 56 84
barbara F 14 62 102
henry M 15 67 135
john M 16 70 165
sally F 16 63 120
;

A Numeric Field

*input name $ sex $ age height weight;

alfred M 14 69 112
alice F 13 56 84
barbara F 14 62 102
henry M 15 67 135
john M 16 70 165
sally F 16 63 120
;

A Record

*input name $ sex $ age height weight;

alfred M 14 69 112
alice F 13 56 84
barbara F 14 62 102
henry M 15 67 135
john M 16 70 165
sally F 16 63 120
;

A File

Reading External Files

data capm; * create the dataset capm;
infile 'a:\TABLE.TXT'; * open the data file Table.txt;
input x1 x2 m; * input the variables;

proc print; * print;
var x1 x2 m; * variables;
title 'CAPM Data'; * print title;

run; * run;

Input Styles: List Input

input x1 x2 m; * input the variables;

This statement reads in the data in a SAS program.

When only the variables are listed, with $ to indicate

character variables, it’s called “List Input”, the simplest

input style in SAS.

You will use different input styles, depending on what

the data look like.

Rules for List Input

• Fields must be separated by at least 1 blank

• Each field must appear in order

• Missing values must be represented by a
placeholder (a period . in this case)

• No embedded blanks in character fields

• Maximum length of character fields is 8
characters

• Data must be in a standard format (e.g. text
file)

Looking at Data in SAS

After creating a SAS data set, it’s a good idea to

look at the data to make sure it was read correctly.

You can use proc print to write the data to the output

window, or you browse the data interactively.

Let’s browse the data interactively.

SAS Libraries

• Notice that the SAS data file CAPM has
another descriptor when we used the “Data
Access” menu to browse the data

SAS Libraries

• Notice that the SAS data file CAPM has
another descriptor when we used the “Data
Access” menu to browse the data

• The first column is headed “Libname”
• Means “SAS Library Name”

• CAPM is in Libname “WORK”

• SAS organizes data into “Libraries”, which are
subdirectories

SAS Libraries

• CAPM is in Library “WORK”

• SAS automatically creates a Library called
WORK in temporary memory.

• Anything in WORK is erased when you end
your SAS session

• SAS data sets can be identified by a two-part
name: libname.filename
work.capm is equivalent to capm

SAS Libraries

• Permanent SAS data files are kept in libraries.
To permanently save a SAS data set, you must
define a library other than WORK using a
LIBNAME statement

• Format:

LIBNAME libref ‘your-data-library’;

• libref is the SAS name for your library

• ‘your-data-library’ is a subdirectory

Data cleaning (1) – if then

Format:

IF condition THEN action;

ELSE IF condition THEN action;

ELSE action;

Note:

(1) the if-then-else can be nested as many as you
want

(2) if you need multiple actions instead of one
action, use “DO; action1; action2; END; ”

Data cleaning (1) – if then

• = or EQ means equals

• ~= or NE means not equal

• > or GT means greater than

• < or LT means less than

• >= or GE means greater than or equal

• <= or LE means less than or equal

• in means subset
• if gender in (‘M’, ‘F’) then ..;

• Multiple conditions: AND (&), OR(|)

Data cleaning (1) – if then

*reading in program of proj3rawdata3 is on page 21;
data proj3rawdata3;
set proj3rawdata3;
IF fracuninsured<0.15 THEN uninsuregrp=0;
ELSE uninsuregrp=1;
run;
proc contents data=proj3rawdata3; run;
proc print data=proj3rawdata3; run;
Note: (1) the code is less efficient if you replace ELSE ..; with

IF fracuninsured>=0.15 THEN ..;
(2) missing value is always counted as the smallest negative, so
fracuninsured=. will satisfy the condition fracuinsured<0.15. If you
want to ignore the missing obs set the condition as
0<=fracuninsured<0.15.

Data cleaning (1) – if then

* Multiple actions in each branch;

data proj3rawdata3;
set proj3rawdata3;
IF fracuninsured<0.15 AND uninsured>1000000 THEN DO;

uninsuredgrp=0; uninsuredpop=‘over 1 million';
END;

ELSE DO;
uninsuredgrp=1; uninsuredpop=‘less than 1 million';
END;

run;
proc print data=proj3rawdata3; run;

the do-end pair

acts as brackets

Data cleaning (1) – if then

*Use if commands to choose a subsample;

data proj3subsample; /* note here we generate a new data set */

set proj3rawdata3;

IF fracuninsured=. Then delete;

If fracuninsured<=0.1;

run;

proc print data=proj3subsample; run;

Data cleaning (1) – exercise

still use proj3rawdata.

define newgrp = 1 if fracuninsured <0.1 (low)

2 if 0.1<=fracuninsured<0.15 (mid-low)

3 if 0.15<=fracuninsured<0.2 (mid-high)

4 if fracuninsured>=0.2 (high).

Data cleaning (1) – exercise answer

data proj3rawdata3;

set proj3rawdata3;

if fracuninsured<0.1 then newgrp=1;

else if fracuninsured<0.15 then newgrp=2;

else if fracuninsured<0.2 then newgrp=3;

else newgrp=4;

run;

proc contents data=proj3rawdata3; run;

proc print data=proj3rawdata3; run;

Question: What if one observation has fracuninsured=.?

Save data

* Save in sas format;

libname mylib “M:\”;

data mylib,proj3rawdata3;

set proj3rawdata3;

run;

* Export data to excel;

Proc export data=proj3rawdata3

outfile=“M:\proj3data-fromsas.xls”

dbms=excel replace;

Run;

You can also export a sas data file into a comma delimited text file if you write
dbms=csv.

No ; here

proc sort

proc sort data=proj3rawdata3;

by year state;

run;

proc sort data=proj3rawdata3
out=proj3rawdata3_sorted;

by year descending fracuninsured;

run;

* note that missing value is always counted as the
smallest;

proc means and proc univariate

proc means data=proj3rawdata3;

class newgrp;

var insured uninsured fracuninsured;

run;

proc sort data=proj3rawdata3; by newgrp; run;

proc univariate data=proj3rawdata3;

by newgrp;

var insured uninsured fracuninsured;

run;

By default, proc means report

mean, stdev, min, max

Could choose what to report:

proc means data=proj3rawdata3

n mean median;

By default, proc univariate

report median, and many

other statistics

Notes on proc means and proc univariate

*if you do not use class or by command, the statistics
are based on the full sample. If you use class or by
var x, the statistics are based on the subsample
defined by each value of var x.

*You can use class or by in proc means, but only by in
proc univariate;

*whenever you use “by var x”, the data set should be
sorted by var x beforehand;

proc means and proc univariate
allow multiple groups
data proj3rawdata3;

set proj3rawdata3;

if totalpop<6000000 then popgrp=“low”;

else popgrp=“high”;

run;

proc means data=proj3rawdata3;

class newgrp popgrp;

var fracuninsured;

run;

proc sort data=proj3rawdata3;

by newgrp popgrp;

run;

proc univariate data=proj3rawdata3;

by newgrp popgrp;

var fracuninsured;

run;

proc freq

* Remember we already generate a variable called newgrp to
indicate categories of fraction uninsured and a variable called
popgrp to indicate categories of population size;

proc freq data=proj3rawdata3;

tables newgrp

popgrp

newgrp*popgrp;

run;

One dimension frequency table

Two-dimension frequency table

proc chart – histogram for categorical
variables

proc chart data=proj3rawdata3;

title ‘histogram for newgrp’;

vbar newgrp;

run;

proc chart data=proj3rawdata3;

title ‘frequency by two variables’;

vbar newgrp / group=popgrp;

run;

proc chart – histogram for continuous
variable

proc chart data=proj3rawdata3;

title “histogram for continuous variable’;

vbar fracuninsured;

run;

proc chart data=proj3rawdata3;

title ‘histogram with specific midpoints’;

vbar fracuninsured / midpoints=0 to 1 by 0.05;

run;

proc plot – scatter plot

proc plot data=proj3rawdata3;

title ‘scatter plot of fracuninsured and totalpop’;

plot fracuninsured*totalpop;

run;

scatter plot is less informative for
categorical variables

proc plot data=proj3rawdata3;

title ‘scatter plot of newgrp and popgrp’;

plot newgrp*popgrp;

run;

fancy proc means

proc means data=proj3rawdata3;

class newgrp popgrp;

var uninsured fracuninsured;

output out = summary1

mean = avguninsured avgfracuninsured;

run;

proc print data=summary1;

run;

some summary stat. in proc print
* Assume we have already defined newgrp and

popgrp in proj3rawdata3;

proc sort data=proj3rawdata3; by popgrp; run;
proc print data=proj3rawdata3 n;

where fracuninsured>=0.1;
by popgrp;
sum totalpop;
var totalpop insured uninsured fracuninsured;
run;

How to handle multiple data sets?

• Add more observations to an existing data and the
new observations follow the same data structure as
the old one ➔ append

• Add more variables to an existing data and the new
variables refer to the same subjects as in the old
data ➔merge

• Sometimes we may need to change data structure
to fit in append or merge ….

merge and append

proj3rawdata3: year state totalpop … fracuninsured newgrp popgrp

2009 MA 6420947 … 0.0548 1 high

summary1: newgrp popgrp avguninsured avgfracuninsured

1 high 7500000 0.073

merged:

year state totalpop ….fracuninsured newgrp popgrp avguninsure avgfracuninsured

2009 MA 6420947 … 0.0548 1 high 7500000 0.073

appended:
year state totalpop ….fracuninsured newgrp popgrp avguninsure avgfracuninsured

2009 MA 6420947 … 0.0548 1 high . .

. . . 1 high 7500000 0.073

merge two datasets

proc sort data=proj3rawdata3;

by newgrp popgrp;

run;

proc sort data=summary1;

by newgrp popgrp;

run;

data merged;

merge proj3rawdata3 (in=one) summary1 (in=two);

by newgrp popgrp;

if one=1 & two=1;

run;
What if this line is

“if one=1 OR two=1;”?

Keep track of matched and
unmatched records

data allrecords;

merge proj3rawdata3 (in=one) summary1 (in=two);

by newgrp popgrp;

myone=one;

mytwo=two;

if one=1 or two=1;

run;

proc freq data=allrecords;

tables myone*mytwo;

run;

SAS will drop variables

“one” and “two”

automatically at the end of

the DATA step. If you want

to keep them, you can copy

them into new variables

“myone” and “mytwo”

be careful about merge!

• always put the merged data into a new data set

• must sort by the key variables before merge

• ok for one-to-one, multi-to-one, one-to-multi, but
no good for multi-to-multi

• be careful of what records you want to keep, and
what records you want to delete

• what if variable x appears in both datasets, but x is
not in the “by” statement?

• after the merge x takes the value defined in the last
dataset of the “merge” statement

append

data appended;

set proj3rawdata3 summary1;

run;

proc print data=appended;

run;

proc print data=merged;

run;

Class example of merge and append:
reshape and summarize

Source format of Proj3rawdata3 (long):

year state totalpop fracuninsured ….

2009 MA 6420947 0.0548 ….

2009 HI 1257622 0.078 ….

….

2008 MA 6339513 0.0536 ….

2008 HI 1267409 0.075 …..

Task1: reshape proj3rawdata3 from long to wide

Task2: generate average fracuninsured per state and merge it

back to the main data

Target format (wide)

state totalpop2009 fracuninsured2009 . .. Totalpop2008 fracuninsured2008 …..

MA 6420947 0.0548 …. 6339513 0.0536 ……

HI 1257622 0.078 …. 1267409 0.075 ……..

